
Experimental

Andreas Zeller
Saarland University

Program Analysis

• Veri!cation and validation

• Understanding and debugging

• Optimization and transformation

Program Analysis

Static Analysis

• Originates from compiler optimization

• Considers all possible executions

• Can prove universal properties

• Tied to symbolic veri!cation techniques

Experimental Program Analysis
Andreas Zeller • Saarland University,
Saarbrücken, Germany, zeller@cs.uni-
saarland.de, http://www.st.cs.uni-
saarland.de/zeller/

Abstract. Traditionally, program
analysis has been divided into two
camps: Static techniques analyze code
and safely determine what can- not
happen; while dynamic techniques
analyze executions to determine what
actually has happened. While static
analysis suffers from overap-
proximation, erring on whatever could
happen, dynamic analysis suffers from
underapproximation, ignoring what else
could happen. In this talk, I suggest to
systematically generate executions to
enhance dynamic anal- ysis, exploring
and searching the space of software
behavior. First results in fault
localization and specification mining
demonstrate the benefits of search-
based analysis.

Keywords: program analysis, test case
generation, specifications

Fun in C
double fun(double x) {
 double n = x / 2;
 const double TOLERANCE = 1.0e-7;
 do {
 n = (n + x / n) / 2;
 } while (ABS(n * n - x) > TOLERANCE);
 return n;
}

Fun Demo

Square Roots in C

double csqrt(double x, double eps) {
 double n = x / 2;
 do {
 n = (n + x / n) / 2;
 } while (ABS(n * n – x) > eps);
 return n;
}

how do we validate this?

This is an easy
exercise for
Andrey
Rybalchenko’s
terminator work ,
for instance.

Here’s a little fun function. What does
it do?

Here’s a few examples. Can you
guess now?

Here it is again,
named. It is actually
called the Byzantine
method for
computing square
roots.

sqrt (x: REAL, eps: REAL): REAL is
 –– Square root of x with precision eps

– precondition

– postcondition

require
 x >= 0 ∧ eps > 0
external
 csqrt (x: REAL, eps: REAL): REAL
do
 Result := csqrt (x, eps)
ensure
 abs (Result ^ 2 – x) <= eps
end –– sqrt

Square Roots in Eiffel

Eiffel
Program

C
Program

Eiffel
in C

Static C Analysis

Real Square Roots

double asqrt(double x, double eps) {
 __asm {
 "d x
 fsqrt
 }
}

Here’s an Eiffel implementation,
coming with pre- and postconditions
we can actually use for validation.

This is hard – but we can still map all
languages to one and, for instance,
analyze C programs.

C
Program

Eiffel
in C

Eiffel
in C

in ASM

C
in ASM

Static Binary Analysis

e.g. with the
S2E platform
(by Candea
and others)

Roots in the Cloud
double rsqrt(double x, double eps) {
 char url[1024];
 char *query =
 “http://www.compute.org/?sqrt(%f,%f)”
 sprintf(url, query, x, eps);
 return atof(query_url(url));
}

how do we validate this?

Eiffel
Program

C
Program

S2E does this nice job of going from
concrete to symbolic and back again

Eiffel
Program

C
Program Server

Static Analysis
This is where static analysis finally
comes to an end.

But does this actually happen in real
life? I mean, who has multiple
languages, obscure code, remote
calls?

Well, everyone has. You start a
browser, you have it all. None of this is
what program analysis can handle
these days. We’re talking scripts,
we’re talking distributed, we’re talking
amateurs, we’re talking security.

 © Myla Fox Productions

 © Myla Fox Productions

When you’re doing static analysis
these days, you’re in some kind of
dreamland. Everything is beautiful,
everything is well-defined, and
everything is under your control. (This
is also called the academic bubble).

Picture © Myla Fox Productions
http://mylafox.deviantart.com/art/My-
Little-Pony-Rainbow-Dash-199094976

In real life, though, you’re stuck – and
we do not have an answer to these
new challenges.

Picture © Myla Fox Productions
http://mylafox.deviantart.com/art/My-
Little-Pony-Rainbow-Dash-199094976

requires perfect knowledge

limited to observed runs

limited to observed runs

need more runs

So, is there some sort of middle ground
– something that combines
the coverage of static analysis with
the applicability of dynamic analysis?

Test Case Generation

• generates as many executions as needed

• random / search-based / constraint-based

• typically directed towards speci!c goals

• achieves high coverage on real programs

Generate test cases
to systematically
explore behavior

Assess executions
to learn about

software behavior

executions

Generate test cases
to systematically
explore behavior

Assess executions
to learn about

software behavior

executions

speci"cations

Experimental
Program Analysis

• generate executions as needed

• analyze resulting executions and results

• analysis results drive test case generation

• explore as much behavior as possible

Enriching speci"cations

Execute and extract
initial spec

void ProtocolTest() {
Protocol p = new ...
p.conn();
p.send(x);
p.quit();

}

enriched specinitial spec

Generate test mutants
and enrich specs

Dallmeier et al: “Generating Test Cases for Speci!cation Mining”, ISSTA 2010

void TestMutant2() {
Protocol p = new ...
//p.conn();
p.send(x);
p.quit();

}

void TestMutant1() {
Protocol p = new ...
p.conn();
p.send(x);
p.conn();
p.quit();

}

SMTPProtocol

0

EX

1
conn()

quit()

send(x)

send(x)

start<init>()

conn()

void ProtocolTest() {
Protocol p = new ...
p.conn();
p.send(x);
p.quit();

}

conn()?send(x)?
Uncovered
0: send(x)
 quit()
1: conn()

Uncovered
0: send(x)
 quit()
1: conn()

Dallmeier et al: “Generating Test Cases for Speci!cation Mining”, ISSTA 2010

enrichedinitial

Dallmeier et al: “Generating Test Cases for Speci!cation Mining”, ISSTA 2010

Generate test cases
to systematically
explore behavior

Assess executions
to learn about

software behavior

executions

speci"cations

0

10

20

30

40

50

60

70

SMTPProtocol

Do enriched specs contain
more information?

Signature ZipOutputStream

initial enriched

states
transitions

exceptions

states
transitions

exceptions

states
transitions

exceptions

Enriched specs have more regular
and exceptional transitions

“Enriched specs have more regular
and exceptional transitions”;
“Enriched specs can be almost as
effective as manually crafted specs”

init vs enrich
consistent for 3 other subjects
Enrich more trans. ALSO BETTER
FOR VERIF?

Evaluation
Class Client Initial Model Enriched Model

↯
open

close

open

close

close

open open

Second Client Mutated Client

Error
Reports

JFTA
Static Typestate Verifier

Tautoko
 Spec
 Miner +

0%

20%

40%

60%

80%

100%

SMTPProtocol Signature ZipOutputStream

How effective are
enriched speci"cations?

reported at correct location total reported

initial
enriched

manual
initial

enriched
manual

initial
enriched

manual

Enriched specs are better suited to
"nding errors than initial specs

Enriched specs can be almost as
effective as manually crafted specs

Enriching speci"cations

Execute and extract
initial spec

void ProtocolTest() {
Protocol p = new ...
p.conn();
p.send(x);
p.quit();

}

enriched specinitial spec

Generate test mutants
and enrich specs

Dallmeier et al: “Generating Test Cases for Speci!cation Mining”, ISSTA 2010

two types: report at correct call, at least
report a violation
for comp, manually created model
again consistent with other 3 test cases

• Static analysis

• Dynamic analysis

• Experimental analysis

A new kind of Analysis

– 0 runs
– n given runs
– n generated runs

Generate test cases
to systematically
explore behavior

Assess executions
to learn about

software behavior

executions

speci"cations

Are these real
executions?

Here’s a simple addressbook.

public class RandoopTest0 extends TestCase {
 ...

 public void test8() throws Throwable {
 if (debug) System.out.printf("%nRandoopTest0.test8");

 AddressBook var0 = new AddressBook();
 EventHandler var1 = var0.getEventHandler();
 Category var2 = var0.getRootCategory();
 Contact var3 = new Contact();
 AddressBook var4 = new AddressBook();
 EventHandler var5 = var4.getEventHandler();
 Category var6 = var4.getRootCategory();
 String var7 = var6.getName();
 var0.addCategory(var3, var6);
 SelectionHandler var9 = new SelectionHandler();
 AddressBook var10 = new AddressBook();
 EventHandler var11 = var10.getEventHandler();
 Category var12 = var10.getRootCategory();
 EventHandler var13 = var10.getEventHandler();
 SelectionHandler var14 = new SelectionHandler();
 actions.CreateContactAction var15 = new actions.CreateContactAction(var10, var14);
 boolean var16 = var15.isEnabled();
 AddressBook var17 = new AddressBook();
 EventHandler var18 = var17.getEventHandler();
 Category var19 = var17.getRootCategory();
 String var20 = var19.getName();
 var15.categorySelected(var19);
 var9.addCategorySelectionListener((CategorySelectionListener)var15);
 ContactTablePanel var23 = new ContactTablePanel(var0, var9);
 AddressBook var24 = new AddressBook();
 Category var25 = var24.getRootCategory();
 AddressBook var26 = new AddressBook();
 EventHandler var27 = var26.getEventHandler();
 Category var28 = var26.getRootCategory();
 Contact var29 = new Contact();
 AddressBook var30 = new AddressBook();
 EventHandler var31 = var30.getEventHandler();
 Category var32 = var30.getRootCategory();
 String var33 = var32.getName();
 var26.addCategory(var29, var32);
 SelectionHandler var35 = new SelectionHandler();
 AddressBook var36 = new AddressBook();
 EventHandler var37 = var36.getEventHandler();
 Category var38 = var36.getRootCategory();
 EventHandler var39 = var36.getEventHandler();
 SelectionHandler var40 = new SelectionHandler();
 actions.CreateContactAction var41 = new actions.CreateContactAction(var36, var40);
 boolean var42 = var41.isEnabled();
 AddressBook var43 = new AddressBook();
 EventHandler var44 = var43.getEventHandler();
 Category var45 = var43.getRootCategory();
 String var46 = var45.getName();
 var41.categorySelected(var45);
 var35.addCategorySelectionListener((CategorySelectionListener)var41);
 ContactTablePanel var49 = new ContactTablePanel(var26, var35);
 CategoryTreePanel var50 = new CategoryTreePanel(var24, var35);
 actions.CreateCategoryAction var51 = new actions.CreateCategoryAction(var0, var35);
 AddressBook var52 = new AddressBook();
 Category var53 = var52.getRootCategory();
 AddressBook var54 = new AddressBook();
 EventHandler var55 = var54.getEventHandler();
 Category var56 = var54.getRootCategory();
 EventHandler var57 = var54.getEventHandler();
 SelectionHandler var58 = new SelectionHandler();
 ContactEditionPanel var59 = new ContactEditionPanel(var54, var58);
 JPanel var60 = var59.getPanel();
 JFrame var61 = samples.utils.SampleUtils.createFrame((JComponent)var60);
 CategorySelectionDialog var62 = new CategorySelectionDialog(var52, (java.awt.Frame)var61);
 CategorySelectionDialog var63 = new CategorySelectionDialog(var0, (java.awt.Frame)var61);
 MainWindow var64 = new MainWindow(var0);
 AddressBook var65 = new AddressBook();
 EventHandler var66 = var65.getEventHandler();
 Category var67 = var65.getRootCategory();
 Contact var68 = new Contact();
 Category[] var69 = var68.getCategories();
 var65.removeContact(var68);
 java.util.List var71 = var65.getContacts();
 AddressBook var72 = new AddressBook();
 EventHandler var73 = var72.getEventHandler();
 Category var74 = var72.getRootCategory();
 EventHandler var75 = var72.getEventHandler();
 SelectionHandler var76 = new SelectionHandler();
 actions.CreateContactAction var77 = new actions.CreateContactAction(var72, var76);
 boolean var78 = var77.isEnabled();
 AddressBook var79 = new AddressBook();
 EventHandler var80 = var79.getEventHandler();
 Category var81 = var79.getRootCategory();
 String var82 = var81.getName();
 var77.categorySelected(var81);
 Category var85 = var65.createCategory(var81, "hi!");
 String var86 = var85.toString();
 Category var88 = var0.createCategory(var85, "exceptions.NameAlreadyInUseException");
 }

 ...
}

Random Testing

public class RandoopTest0 extends TestCase {
 ...

 public void test8() throws Throwable {
 if (debug) System.out.printf("%nRandoopTest0.test8");

 AddressBook var0 = new AddressBook();
 EventHandler var1 = var0.getEventHandler();
 Category var2 = var0.getRootCategory();
 Contact var3 = new Contact();
 AddressBook var4 = new AddressBook();
 EventHandler var5 = var4.getEventHandler();
 Category var6 = var4.getRootCategory();
 String var7 = var6.getName();
 var0.addCategory(var3, var6);
 SelectionHandler var9 = new SelectionHandler();
 AddressBook var10 = new AddressBook();
 EventHandler var11 = var10.getEventHandler();
 Category var12 = var10.getRootCategory();
 EventHandler var13 = var10.getEventHandler();
 SelectionHandler var14 = new SelectionHandler();
 actions.CreateContactAction var15 = new actions.CreateContactAction(var10, var14);
 boolean var16 = var15.isEnabled();
 AddressBook var17 = new AddressBook();
 EventHandler var18 = var17.getEventHandler();
 Category var19 = var17.getRootCategory();
 String var20 = var19.getName();
 var15.categorySelected(var19);
 var9.addCategorySelectionListener((CategorySelectionListener)var15);
 ContactTablePanel var23 = new ContactTablePanel(var0, var9);
 AddressBook var24 = new AddressBook();
 Category var25 = var24.getRootCategory();
 AddressBook var26 = new AddressBook();
 EventHandler var27 = var26.getEventHandler();
 Category var28 = var26.getRootCategory();
 Contact var29 = new Contact();
 AddressBook var30 = new AddressBook();
 EventHandler var31 = var30.getEventHandler();
 Category var32 = var30.getRootCategory();
 String var33 = var32.getName();
 var26.addCategory(var29, var32);
 SelectionHandler var35 = new SelectionHandler();
 AddressBook var36 = new AddressBook();
 EventHandler var37 = var36.getEventHandler();
 Category var38 = var36.getRootCategory();
 EventHandler var39 = var36.getEventHandler();
 SelectionHandler var40 = new SelectionHandler();
 actions.CreateContactAction var41 = new actions.CreateContactAction(var36, var40);
 boolean var42 = var41.isEnabled();
 AddressBook var43 = new AddressBook();
 EventHandler var44 = var43.getEventHandler();
 Category var45 = var43.getRootCategory();
 String var46 = var45.getName();
 var41.categorySelected(var45);
 var35.addCategorySelectionListener((CategorySelectionListener)var41);
 ContactTablePanel var49 = new ContactTablePanel(var26, var35);
 CategoryTreePanel var50 = new CategoryTreePanel(var24, var35);
 actions.CreateCategoryAction var51 = new actions.CreateCategoryAction(var0, var35);
 AddressBook var52 = new AddressBook();
 Category var53 = var52.getRootCategory();
 AddressBook var54 = new AddressBook();
 EventHandler var55 = var54.getEventHandler();
 Category var56 = var54.getRootCategory();
 EventHandler var57 = var54.getEventHandler();
 SelectionHandler var58 = new SelectionHandler();
 ContactEditionPanel var59 = new ContactEditionPanel(var54, var58);
 JPanel var60 = var59.getPanel();
 JFrame var61 = samples.utils.SampleUtils.createFrame((JComponent)var60);
 CategorySelectionDialog var62 = new CategorySelectionDialog(var52, (java.awt.Frame)var61);
 CategorySelectionDialog var63 = new CategorySelectionDialog(var0, (java.awt.Frame)var61);
 MainWindow var64 = new MainWindow(var0);
 AddressBook var65 = new AddressBook();
 EventHandler var66 = var65.getEventHandler();
 Category var67 = var65.getRootCategory();
 Contact var68 = new Contact();
 Category[] var69 = var68.getCategories();
 var65.removeContact(var68);
 java.util.List var71 = var65.getContacts();
 AddressBook var72 = new AddressBook();
 EventHandler var73 = var72.getEventHandler();
 Category var74 = var72.getRootCategory();
 EventHandler var75 = var72.getEventHandler();
 SelectionHandler var76 = new SelectionHandler();
 actions.CreateContactAction var77 = new actions.CreateContactAction(var72, var76);
 boolean var78 = var77.isEnabled();
 AddressBook var79 = new AddressBook();
 EventHandler var80 = var79.getEventHandler();
 Category var81 = var79.getRootCategory();
 String var82 = var81.getName();
 var77.categorySelected(var81);
 Category var85 = var65.createCategory(var81, "hi!");
 String var86 = var85.toString();
 Category var88 = var0.createCategory(var85, "exceptions.NameAlreadyInUseException");
 }

 ...
}

Simpli"ed Test Case

public class RandoopTest0 extends TestCase {
 public void test8() throws Throwable {
 if (debug) System.out.printf("%nRandoopTest0.test8");

 AddressBook a1 = new AddressBook();
 AddressBook a2 = new AddressBook();
 Category a1c = a1.createCategory(a1.getRootCategory(), "a1c");
 Category a2c = a2.createCategory(a1c, "a2c");
 }
}

Here’s a test case generated by
Randoop. It’s >200 lines long…

… and in the end, it fails. What do you
do now?

A simplified version of the above. If
you use two address book objects and
make one’s category depend on one
the other, it’ll crash.

how many addressbooks?

112 failures

0 PROBLEMS

0 PROBLEMS

Catch: There’s only one addressbook!
So the Randoop test makes little
sense, because it violates an implicit
precondition

The catch is: There’s never more than
one addressbook! So the Randoop
test makes little sense, because it
violates an implicit precondition. When
testing the Addressbook classes,
Randoop detects * 112 failures.
However, all of them are false, pointing
to an error in the generated test case
rather than the application itself, which
has *0 problems.

We examined a suite of five
applications; overall, Randoop reported
181 failures, but all of them were false.

…for a little test suite of applications,
we find real bugs:
Addressbook crashes when editing
empty list
Calculator crashes when computing
500*10+5 with “,” as separator
Spreadsheet crashes when pasting
empty clipboard

Search-based
System Testing

• Generate tests at the user interface level

• Aim for code coverage and GUI coverage

• Synthesize arti!cial input events

• Any test generated is a valid input

Joint work with Florian Gross and Gordon Fraser

EXSYST

Coverage Compared

0 %

25 %

50 %

75 %

100 %

Addressbook Calculator TerpPresent TerpSpreadSheet TerpWord

Randoop Evosuite GUItar Exsyst
Unit Test Generators GUI Test Generators

What I'm going to demo you now is our
prototype called EXSYST, for
Explorative SYStem Testing. EXSYST
takes a Java program with a graphical
user interface, such as our
Addressbook example. It then
generates user inputs such as mouse
clicks or keystrokes and feeds them
into the program. What you see here
is EXSYST clicking and typing into the
address book program; at the top, you
see the statement coverage achieved
so far. (Normally, all of this takes place
in the background, so you don't see it,
and it is also much much faster).

At first, these inputs are completely
random, as you can see in these initial
steps. But then, the search-based

The results are
clear. Although it’s
going through the
GUI, EXSYST
achieves a far
higher coverage
than Randoop.
Here are the
results for *
Addressbook and

generating
system tests:

higher coverage,
no false alarms,
realistic specs

generating
unit tests:
lower coverage,
false alarms,
fuzzy specs

real

real

Generate test cases
to systematically
explore behavior

Assess executions
to learn about

software behavior

executions

speci"cations

Are these real
executions?
Do we get

real speci!cations?

real

real

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Carving Invariants

* The more we can cover behavior, the
more we learn about the system
* In presence of obscure code, search-
based techniques are first choice

We map the pre-
and
postconditions, as
implemented in the
system interface,
down to the code –
and thus down to
the extracted
specs.

DaikonExecutions Invariants

Carving Invariants

DaikonExecutions Invariants

Carving Invariants

EvoSuite
Unit Tests

Carving Invariants

DaikonExecutions InvariantsEvoSuite
Unit Tests

EXSYST DaikonExecutions Invariants
System Tests

Carving Invariants

DaikonExecutions InvariantsEvoSuite
Unit Tests

EXSYST DaikonExecutions Invariants
System Tests

Carving Invariants

DaikonExecutions InvariantsEvoSuite
Unit Tests

Daikon

EXSYST
System Tests

Invariants Compared

Daikon

EvoSuite
Unit Tests

+

+

Florian Gross, Andreas Zeller

Daikon

EXSYST
System Tests

CalculatorPanel

Daikon

EvoSuite
Unit Tests

+

+

 this.calculator.operator == null

(no such invariant:
explores multiple operators)

Object Invariants

Daikon

EXSYST
System Tests

CalculatorPanel

Daikon

EvoSuite
Unit Tests

+

+

(no such invariant:
this.calculator.operator == null)

this.calculator.state.getClass() !=
this.calculator.operator.getClass()

Object Invariants

Daikon

EXSYST
System Tests

Calculator Operand

Daikon

EvoSuite
Unit Tests

+

+

(no such invariant:
 c takes random values)

c in {“0”…”9”}

EnteringFirstOperandState(Calculator, char c)

Generate test cases
to systematically
explore behavior

Assess executions
to learn about

software behavior

executions

speci"cations

Do we get
real speci!cations?

Do we get
proven

speci"cations?

Proving a Multiplier

_(requires 0 ≤ x < 65535)
_(requires 0 ≤ y < 65535)
_(ensures \result == x*y)
 mult = i = 0;
 while (i<y) {
 mult += x; i++;
 }
 return mult;

VCC

Mining Loop Invariants

 mult = i = 0;
 while (i<y) {
 mult += x; i++;
 }
 return mult;

Daikon

EvoSuite
Unit Tests

+

#1 x one of { 1, 1316 }
#2 y one of { 1, 131 }
#3 i >= 0
...
#9 i <= y
#10 i == (mult / x)
#11 mult == (x * i)

VCC

Juan Pablo Galeotti, Andreas Zeller

Automated
program proving
requires loop and
recursion
invariants

Proven Speci"cations

_(requires 0 ≤ x < 65535)
_(requires 0 ≤ y < 65535)
_(ensures \result == x*y)
 mult = i = 0;
 while (i<y) {
 mult += x; i++;
 }
 return mult;

VCC

 © Myla Fox Productions

?
But then, remember: all of this build on
a finite number of executions. Will we
ever be able to reach the
completeness of static and symbolic
techniques?

Picture © Myla Fox Productions
http://mylafox.deviantart.com/art/My-
Little-Pony-Rainbow-Dash-199094976

Static Analysis

Eiffel
Program

C
Program Server

enriched spec enriched spec enriched spec

Static Analysis

Eiffel
Program

C
Program Server

✔

enriched spec

✔ ✔

enriched spec enriched spec

Compositional
Veri"cation

Eiffel
Program

C
Program Server

✔

enriched spec

✔ ✔

enriched spec

 © Myla Fox Productions

The maybe best part of experimental
analysis, however, is that it smoothly
blends with all sorts of static
analysis and verification. That’s
because we can use the mined
specifications as surrogates for
individual components, allowing for
local verification and analysis.

At the end, we thus get the best of both
worlds – we get dynamic analysis,
static analysis, verification and
validation all into one. We have a long
way before us, but I think that this is a
nice way to make verification
scalable…

 © Myla Fox Productions

requires perfect knowledge

limited to observed runs

SAMBAMBA

• Compiler and runtime system
for online adaptive parallelization

• Based on LLVM

• Target: Common C/C++ programs

…scalable to the challenges that await
for us, every day, everywhere in the
wide world of software.

Parallelize this!long performTask(int size1, int size2) {
 list *x = makeList(size1);
 list *y = makeList(size2);

 long hashX = hashList(x);
 long hashY = hashList(y);

 freeList(x);
 freeList(y);

 return hashX * hashY;
}

long hashList(list *x) {
 if (x == 0) return 0;
 return hashElem(x) + 31 * hashList(x->next);
}

SAMBAMBA

Compile-Time
Analysis

Parallelization

Speculative
ExecutionCalibration

Adaptation

Hardware Transactional
Memory

Konrad Lei
Senior Engineer
Intel Oregon

NDAs heute angekommen

Demo 1:
- gcc
- execute gcc
version
- run sambamba
(parallelized both
functions)
- execute
sambamba version

real

real

Challenges

• Finding relevant speci"cations
Ranking wrt usage, bug-!nding capabilities

• Expressing speci"cations
Choosing a generic, domain-speci!c vocabulary

• Continuous speci"cation
Abstract feedback while you program

Mining specs Complete specs

Real specs Veri!ed specs

* The more we can cover behavior, the
more we learn about the system
* In presence of obscure code, search-
based techniques are first choice

And this is not only what we should do
– this is something we must do. Thank
you!

